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ScienceDirect
Generalized dietary and lifestyle guidelines have been

formulated and published for decades now from a variety of

relevant agencies in an attempt to guide people towards

healthy choices. As the pandemic rise in metabolic diseases

continues to increase, it has become clear that the one-fit-for-

all diet approach does not work and that there is a significant

variation in inter-individual responses to diet and lifestyle

interventions. Recent technological advances have given an

unprecedented insight into the sources of this variation,

pointing towards our genome and microbiome as potentially

and previously under-explored culprits contributing to

individually unique dietary responses. Variations in our genome

influence the bioavailability and metabolism of nutrients

between individuals, while inter-individual compositional

variation of commensal gut microbiota leads to different

microbe functional potential, metabolite production and

metabolism modulation. Quantifying and incorporating these

factors into a comprehensive personalized nutrition approach

may enable practitioners to rationally incorporate individual

nutritional recommendations in combating the metabolic

syndrome pandemic.
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Introduction
The past century has witnessed our modern ‘developed’

societies adopting dramatic changes in lifestyle and
www.sciencedirect.com 
dietary habits that are characterized by limited physical

activity in conjunction with over nutrition with foods high

in fat, processed meat, sugars, salt and refined grains while

being low in fruits and vegetables [1]. In parallel, the

same societies have developed a global pandemic con-

sisting of obesity, type 2 diabetes [2], non-alcoholic fatty

liver disease and their many complications, collectively

accounting for the morbidity and mortality of billions of

individuals worldwide. In parallel, concerted efforts have

focused on determining the components constituting a

healthy and beneficial diet, and on educating the public

on healthy dietary practices along generalized lines.

Of note is that the US government has been publishing

dietary guidelines and advice for over a century, with no

less than 900 publications (guidance and educational)

during that time (U.S. Department of Agriculture;

URL: http://fnic.nal.usda.gov/dietary-guidance/

myplate-and-historical-food-pyramid-resources). Easy

to comprehend tools such as the Food Guide Pyramid

and more recent MyPlate act as beacons of daily nutri-

tional recommendation.

Despite the enormous implications of the metabolic

syndrome pandemic on economy and health and wide-

spread efforts to understand its causes and to develop

effective interventions, it has not been efficiently con-

trolled to date [2]. One possible cause of this failure

relates to our poor understanding of nutritional causes

contributing to the prevalence of obesity, diabetes,

NAFLD and their common complications. Commonly,

in the last three decades nutritional guidelines have

attempted to address the epidemic by prescribing popu-

lation-wide recommendations for ‘healthy’ versus

‘unhealthy’ foods [3]. These often failed, as seen by

the global increase in the prevalence of obesity, a major

risk factor of metabolic disease, with over 300 million

adults worldwide estimated to be suffering of morbid

obesity [4]. Furthermore, there has been a significant rise

in the number of individuals with diabetes worldwide,

from 108 million adults in 1980 to 422 million in 2014 [5].

This astounding rise in the prevalence of closely asso-

ciated diseases constituting the ‘metabolic syndrome’

carries significant global medical and economic conse-

quences [6].

The disappointing efficacy of dietary interventions to

obesity and its complications may stem from lack of

regard to inter-individual variabilities in dietary responses

[7]. Indeed, a recent realization is that some of the
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metabolic responses to diet differ from one individual to

another, as exemplified by cholesterol metabolism and

postprandial hyperglycemia, risk factors for cardiovascu-

lar disease (CVD) and type 2 diabetes [8,9], and by recent

studies demonstrating that not all individuals respond in

the same way to changes in lifestyle and this certainly

applies to dietary changes [10,11]. Fundamental factors

suggested to determine our individualized response to

foods, and the biological implications of their consump-

tion include the human genome [12], our epigenome [13],

our microbiome [14��], and inter-personal variations in a

variety of environmental exposures and life style factors

[15]. Recent technological advances have given us an

unprecedented insight into this interpersonal variability,

in terms of the ability to accurately quantify genetic

background and microbiome community structure, both

of which modulate metabolic activity and form complex

and poorly understood interactions with the components

of our diet, modulating their metabolism and utilization.

The genetic contribution towards disease risk has been

known and studied for decades, while the commensal

microbiota contribution has been ignored until recently

and is being increasingly appreciated to contribute to

individualized responses to food, and even link a variety

of environmental factors to host physiology [16]. The

inclusion of the microbiome as a necessary element

explaining personal uniqueness has led to a paradigm

shift in terms of our understanding of inter-individual

variability and how it influences responses to environ-

mental factors (such as diet). We are now in an era where

we finally have the technologies that allow us to devise

data-driven approaches to personalized diet interventions

that take into account variation at the level of our genome

and microbiome.

In this mini-review we discuss the current state of play

with regards to personalized nutrition and highlight the

main factors modulating individual responses to nutri-

tional interventions.

Source of human variation modulating
responses to diet
The main sources of human variation that modulate

responses to diet include the genome and microbiome.

While both may be used for a person-specific diagnosis

and stratification of dietary responses and recommenda-

tions, the microbiome is also amenable to modulation by

approaches such as pro-biotics, pre-biotics, antibiotic

treatment, and recently post-biotic intervention, thereby

representing an exciting new potential for preventive and

interventional modification of personalized dietary

responses.

Human genome

Successful full genome characterization by the Human

Genome project [17] was followed by additional large

collaborative efforts to characterize human genetic
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variation, including the International HapMap consor-

tium [18], the Human Variome Project [19] and the

1000 Genomes Project Consortium [20]. Large scale

genetic variation information has facilitated population

based studies such as genome-wide association studies

(GWAS) to determine genetic influences on disease risk

[21]. It is now accepted that genetic variations influence

the bioavailability and metabolism of nutrients between

individuals but also between ethnic groups. This notion

has revolutionized the field of nutritional sciences and has

paved the way for personalized nutrition approaches.

Propagated by rampant advances in genomics technolo-

gies, an unprecedented volume of data on genetic varia-

tions throughout the genome has been acquired and

characterized [19,20]. Epidemiological nutritional studies

have suggested an association between diet and chronic

diseases, revolutionizing the field of nutritional research

by incorporating individual genetic information (Figure 1)

and giving rise to a new area of study, namely nutrige-

nomics that is the study of how our genes influence

dietary intake. Understanding these underlying interac-

tions can translate into individual specific nutritional

interventions based on their genetic characteristics and

result in the identification of positive and negative

responders or those that do not respond at all to diet

interventions.

The neutrigenomics approach was best exemplified in

rare monogenic disorders such as phenylketonuria (PKU).

PKU patients have mutations in the PAH gene (encodes

the enzyme that converts phenylalanine to tyrosine)

resulting in an accumulation of phenylalanine and its

toxic metabolites, leading to mental retardation and

delayed development. Nutritional intervention

(restricted in phenylalanine and supplemented in tyro-

sine) is currently regarded as the only available treatment,

which, when properly followed, prevents the deleterious

life-risking complications of PKU. Another example of

neutrigenomics interventional approaches in a mono-

genic disease can be seen in the case of Galactosemia,

a metabolic disease resulting in the inability to metabo-

lism galactose. It represents a group of three metabolic

diseases (Type I, Type II and Type III galactosemia

caused by mutations in the genes GALT, GALK1, GALE

respectively) with deficiencies in enzymes from the

Leloir pathway of galactose catabolism [22]. Currently,

the only form of effective treatment for galactosemia is

galactose restriction.

Despite the efficiency exemplified in the above mono-

genic disorders in using genomics for dietary recommen-

dations, adaptation of genomic diagnostics and stratifica-

tion tools in tailoring diets for the prevention and

treatment of chronic polygenic complex diseases such

as cancer, CVD, obesity and type 2 diabetes has proven

much more complicated and of limited value. Examples
www.sciencedirect.com
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Rationally designed personalized dietary approaches determine the effects of numerous parameters on diet response (e.g. microbiome

composition, genome variability, personal lifestyle, medical metadata). Machine learning algorithms utilize these comprehensive data sets to

deliver dietary recommendations.
of genomic contribution to dietary planning in the context

of multi-factorial diseases are sparse and include

enhanced benefits of Mediterranean diet in preventing

breast cancer risks in patients carrying SNPs in GST1

(glutathione S-transferase 1) and Nat2 (N-acetyltransfer-

ase 2) of the xenobiotic metabolism pathway [23].

Another example relates to individuals with the APOA2

CC genotype who are found to feature a greater suscep-

tibility to increased BMI and obesity upon consumption

of a diet that is abundant in high-saturated fat [24]. These

individuals with the APOA2 CC genotype may therefore

benefit from following a diet regiment with reduced

saturated fat intake. Furthermore, transcription factor

7-like 2 gene (TCF7L2) polymorphism rs7903146

(C>T) has been associated with type 2 diabetes [24].

A randomized trial following 7018 participants found

Mediterranean diet to decrease fasting glucose and lipids

and reduced the incidence of stroke in TT homozygote

individuals [25].

However, the many other claimed nutrigenomics

approaches of effectively influencing dietary choices

among the general population at risk have mostly proven

to be non-evidence based. For example, Pavlides et al.
[26��] show this in a meta-analysis focusing on 38 genes

that are included in commercially available nutrige-

nomics tests and are commonly analyzed. They found
www.sciencedirect.com 
inconsistencies and conflicting results with regards to

gene–diet associations, as well as a lack of significant

association for these 38 genes [26��]. Apart from indicat-

ing the need for a solid scientific basis in the implemen-

tation of neutrigenomics, it also highlights the fact that

these are still early days and the field is in need of further

development. Furthermore, a meta-analysis of thirteen

observational studies reporting gene–macronutrient

interactions and Type 2 diabetes [27��] showed that none

of the eight unique interactions reported to be significant

between macronutrients and genetic variants in or near

TCF7L2, GIPR, CAV2 and PEPD were replicated.

Furthermore, the added value of providing elaborate

genetic information to individuals undergoing personal-

ized nutrition (PN) advice should be considered. It is

indicative that the largest intervention study to date

comparing the effect of PN on health related dietary

behavior showed the advantage of PN advice based on

individual baseline diet and lifestyle over a conventional

approach. However, no additional advantage was found

by basing PN advice on individual baseline diet and

phenotype (anthropometry and medical metadata), or

individual baseline diet plus phenotype plus genotype

(five diet responsive genetic variants) [28]. It should

be noted however that the baseline diets, lifestyle

and phenotypes were self-reported by participants,
Current Opinion in Biotechnology 2018, 51:57–63
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potentially introducing a bias and in turn reducing the

benefits of including genetic information.

Gut microbiome

A recently appreciated factor that greatly contributes to

our understanding of inter-individual human variability is

the enormous micro-organismal ecosystem and its gene

pool that are integrated into all mucosal surfaces of the

human body, collectively termed the microbiome. The

most heavily colonized and studied ecosystem, the gut

microbiome, contains a heavy population of bacteria of

equal numbers as our own cells [29] and as many as

100 times more genes as the human genome, and is

considered to be our ‘second genome’ [30]. In addition

to bacteria, the gut microbiome contains a plethora of

viruses [31], achaea [32], fungi [33] and parasites [34],

collectively forming a large ecosystem that is increasingly

recognized to impact multiple facets of human physiology

[35]. Among others, our microbiome modulates our

metabolism and disease risk [36]. The inter-individual

microbiota community structure of healthy individuals

differs significantly in colonized sites such as gut and skin

[37–39]. Furthermore, inter-individual variation in gene

content of microbiota species leads to differences in their

functional potential [40].

Commensal microbionts have a deeply symbiotic rela-

tionship with their human host, providing it with many

essential functions [41]. It is now established that micro-

biota, along with other important factors such as lifestyle

and genetics, can modulate responses to diet. Changes in

diet can modulate host physiology and disease through

commensal microbiota. For example, elevated levels of

Trimethylamine-N-oxide (TMAO) and other choline

metabolites are associated with greater risks of adverse

cardiovascular events and are dependent on gut micro-

biome metabolism [42]. Plasma levels of TMAO in

patients were significantly suppressed after the intake

of antibiotics and reappeared after cessation of antibiotics

[42]. The intra-personal difference in the circulation of

TMAO when consuming TMAO precursors is a function

of gut microbiome, with people who showed greater

TMAO response having the higher ratio of Firmicutes
to Bacteroidetes [43].

Another example is of flavonoids, polyphenolic com-

pounds found in numerous dietary components including

vegetables and fruits. Several subclasses of flavonoids

have been suggested to play a role in human physiology

affecting for example cardiometabolic health as well as

cognitive function [44]. A large amount of ingested fla-

vonoids reach the colon and undergo hydrolysis and

fermentation by commensal microbiota. A high level of

variability in flavonoid bioconversion occurs as a result of

variability in microbiome composition with some individ-

uals having a greater ability to convert flavonoids [45] that
Current Opinion in Biotechnology 2018, 51:57–63 
can result in the production of metabolites with greater

biological activity.

In addition to the above examples demonstrating how the

microbiome responds to diet and utilizes dietary com-

pounds in its interactions with the host, diet is also a

crucial component in shaping the microbial environment

[46]. Following some types of dietary interventions, the

microbiome may undergo changes in less than a week,

and these changes occur at both taxonomic and bacterial

gene expression levels [47]. Importantly, community

changes imposed by diet can be predicted, with important

ramifications on the prospect of dietary interventions

[48�]. It is however relevant to point out that although

dramatic dietary alterations indeed impact the micro-

biome structure, more subtle changes may not [49],

demonstrating potential microbiome resilience to some

less dramatic dietary changes, as indicated by Korem et al.
[48�]. Furthermore, changes conferred to the microbiome

structure can be direct, and be mediated through diet

composition, for example high protein and animal fat as

opposed to carbohydrates that can each drive the abun-

dance of particular bacteria such as Bacteroides and Pre-
votella respectively [50]. Changes conferred can also be

indirect via microbiota-associated metabolites innate

immune modulation, whereby microbiota metabolites

modulate NLRP6 inflammasome signaling and the

resulting microbiome-host interactions can influence

community stability [51].

Towards individualized dietary approaches
Moving towards rationally designing personalized die-

tary approaches must take into account the intricacies of

the microbiome and its effects on human physiology, as

well as details on person specific life style and medical

metadata. Exemplifying the use of personalized nutri-

tional intervention to lower postprandial glycemic

response, Zeevi et al. [14��] developed a machine-learn-

ing algorithm integrating numerous clinical blood

parameters and gut microbiota data to accurately predict

postprandial blood glucose responses to meals on a

personal level. Diet intervention based on these predic-

tions proved to be successful in lowering postprandial

responses [14��]. The benefits of improved glucose

metabolism through consumption of barley kernel-based

bread display substantial inter-individual variability

with responders having a gut microbiota enriched in

Prevotella copri that may be contributing by potentially

promoting glucose storage [52]. The effects of eating

traditionally prepared artisanal sourdough bread

(coveted for its health benefits) compared to industrially

made white bread, were found to be highly personal to

each type of bread [49]. Interestingly, machine-learning

algorithms predicted the type of bread inducing a lower

glycemic response in each person based on gut micro-

biome compositional data [49].
www.sciencedirect.com
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In a further display of inter individual variation through

gut microbiome involvement, dysbiosis resulting by the

intake of non-caloric artificial sweeteners (NAS) can lead

to induction of glucose intolerance. The response of the

individuals to the consumption of NAS is highly variable

and gut microbial composition related [53�]. At a time of

obesity reaching pandemic proportions and diet interven-

tions to reduce weight are on the rise but generally fail in

the long run, in another recent study we showed that the

microbiome is implicated in what is termed the ‘yo-yo’

effect, defined as accumulation of excessive weight gain

when undergoing weight gain-and-loss cycles [54�]. It was

found that the microbiome of normal weight mice with a

history of obesity have a microbiome composition differ-

ent to that of normal mice (without part obesity), that

drives the ‘yo-yo’ effect. Furthermore, transferring the

microbiome of ex-obese mice to germ free (GF) normal

weight mice results in excessive weight gain and other

unfavorable metabolic syndrome effects when given a

high fat diet (HFD). The weight gain of the mice was

predicted with high accuracy using only microbial taxa

abundances and the top ranked bacteria in predicting

weight gain are bacteria capable of breaking flavanoids

and Lactobacillus. Furthermore, the mechanism under-

lying the yo-yo effect is that the energy expenditure of ex-

obese mice is lower compared to normal mice when both

are fed a HFD, and when supplementing ex-obese mice

with Apigenin or Naringenin (plant derived substances

belonging to the Flavanoid family), the energy expendi-

ture increases and the ‘yo-yo’ effect is gone [54�]. Another

study discovered a positive feedback loop between gut

microbiota and the central nervous system, that promotes

hyperphagia and increased energy storage as fat [55]. It

was shown that acetate production increases due to a gut

microbiota–nutrient interaction in HFD-fed rodents,

which in-turn results in parasympathetic nervous system

activation and increased ghrelin (the hormone which

regulates appetite) and glucose stimulated insulin secre-

tion. Collectively, these studies demonstrate the capacity

of massive quantification of person-specific data in con-

tributing to a heightened capability to utilize computa-

tional platforms in predicting clinical outcomes.

Conclusion
As in the emerging field of personalized medicine, there

are increasing efforts to go beyond the one-fit-for-all diet

approaches [3]. Driven by technological advances, our

insights into human variation (with all that it encom-

passes) and its effect on disease risk are steadily increas-

ing. Our inherited genome and our microbial ‘second

genome’ both intricately modulate our response to diet;

this has been studied and established. There is now a

need for developing new tools that will allow using the

whole potential of individual microbiome and genetic

fingerprints for the benefit of PN. This is no easy feat and

requires new approaches in analysis of the ever expanding

data being accumulated. The instruments from the
www.sciencedirect.com 
emerging field of machine learning and big data were

successfully implemented in a series of studies

[49,54�,55,56,57], and with more data available the proper

utilization of information will become a crucial point

(Figure 1). Public acceptance of genetic testing and

microbiome characterization towards implementing PN

in disease prevention is a predominant factor along with

user participation and involvement, as well as their nutri-

ent environment that all play an important role since diet

compliance is crucial [58]. Moreover, the long term effi-

cacy of PN and its advantages over customary population

based dietary recommendations in preventing, ameliorat-

ing and treating metabolic syndrome-associated disorders

remain to be determined. Of note, smartphones are

becoming a universal accessory with the number of

smartphone users estimated to reach 2.5 billion by

2018 (Statistica; URL: https://www.statista.com/

statistics/330695/

number-of-smartphone-users-worldwide/) and can be uti-

lized as a tool in the implementation of PN regiments

through the use of interactive diet related applications for

monitoring nutrient consumption (Figure 1) [59,60].

These can aid in improving long-term compliance, con-

sidered by many in the field to co-constitute the biggest

hurdle in integrating ‘healthier’ dietary habits in large

populations. Another important challenge, as a more

refined understanding of how variability influences dis-

ease risk is achieved, relates to ethical issues concerning

the safeguarding of delicate individual-specific informa-

tion as well as who can access this data and for what

reason. With these limitations and challenges notwith-

standing, integrating ‘big data’ including genomic and

microbiome data into personalized nutrition and person-

alized medicine constitutes one of the most exciting and

promising approaches in tackling common human meta-

bolic disorders.
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